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XV. 4 new Demonstration of the Binomial Theorem, when the
Exponent is a positive or negative Fraction. By the Rev.
Abram Robertson, A.M. F.R.S. Savilian Professor of
Geometry in the University of Oxford. In a Letler to Davies
Giddy, Esq. F.R. S. |

Read June 4, 1806.

DEAR SIR,

Beme perfectly convinced of your love of mathematical
science, and your extensive acquirements in it, I submit to
your perusal a new demonstration of the binomial theorem,
when the exponent is a positive or negative fraction. As I
am a strenuous advocate for smoothing the Way to the acqui-
sition of useful knowledge, I deem the following articles. of
some importance ; and unless I were equally sincere in this
persuasion, and in that of your desire to promote mathemati-
cal studies, in requesting the perusal, I should accuse myself
of an attempt to trifle with your valuable time.

The following demonstration is new only to the extent
above mentioned ; but in order that the reader may perceive
the proof to be complete, a successive perusal of all the
articles is necessary. As far as it relates to the raising of in-
tegral powers, it is in substance the same with one which I
drew up in the year 1794, and which was honoured with a
place in the Philosophical Transactions for 1795. If, therefore,
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gob6 Mr. ROBERTSON’s new Demonstration

you think the following demonstration worthy the attention
of mathematicians, you will much oblige me by presenting it
to the Royal Society.

I am, &ec.

A. ROBERTSON.
Oxford,

March 21st, 1806,

" 1. The binomial theorem is a general expression for any
power of the sum or difference of two quantities. Thus if
be any positive or negative whole number, or vulgar fraction,
and a, b, be any two quantities, the binomial theorem expresses

in a series the value of a--bf", or a—bl".

The binomial theorem is of very extensive utility. Besides
the advantages derived from it in raising powers and ex-
tracting roots, it enables us to conduct, with clearness and
ease, a variety of investigations in the higher parts of algebra,
which, without its assistance, would become perplexed and
laborious. |

2. If # be a whole positive number, we can raise x 42 to
the power denoted by #, in the following manner, by multi-
plication..
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' &ec..

In the same manner the value of x—al" may be obtained;

and its only difference from the value of z4-al’ will consist
in having the negative sign prefixed to such terms as have an
odd power of a. And as the powers of any other quantity,
either simple or compound, may be obtained gradually by
multiplying the last found power by the root, in order to find
the next higher power, it is manifest that the principles of
muldplication are the most simple and evident, to which we
can resort, for the demonstration of the binomial theorem.
These principles, therefore, will be used throughout the whole:
of the following investigations on the subject, and by them.
every case of the theorem will be established.
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It is well known to mathematicians that the theorem has
been repeatedly proved, either by induction, by the summa-
tion of figurate numbers, by the doctrine of combinations,
by assumed series, or by fluxions ; but that multiplication is a
more direct way. to the establishment of the theorem than
any of these, cannot, I think, be doubted. Proceeding by
multiplication, we have always an evident first principle in
view, to which without the aid of any doctrine, foreign to the
subject, we can appeal for the truth of our assertions, and
the certainty and extent of our conclusions.

g. If p, ¢, be any two quantities, the product arising from
the multiplication of p by ¢ is equal to the product arising
from the multiplication of 4 by p.* For magnitudes being to
one another as their equimultiples, pxg:1xq::p:1, and
gxp:iixpiiq:1. But1xg=gq, and 1xp==p, and there-
fore, placing for ex eequali in a cross order,

pxq:q:1
- gxpip:t.
Consequently, px ¢: 1:: ¢xp: 1, and therefore pg=qp.

Hence it follows that the product arising from the multi-
plication of any number of quantities into one another, conti-
nues the same in value, in every variation which may be
made in the arrangement of the quantities which compose it.
Thus p, q, r, s, being any quantities, pgrs==pqr x s = spqr==
SPq % TE=TSPY==1SP X q==qrsp==qr x § x p==qr x p x s=qrps, &c.
And if 2fa=p, x4 b=gq, x-}c=r, r4d=s, xfe=t, &c.
then xe-a x 24-b x x4-¢ x x4=d % x+e=pqrst=mxmx

® When I speak of the multiplication of quantities into one another, I mean the
multiplication of the numbers into one another which measure those quantities.
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Z4cx -+ e x x+4d=pgrts = any other arrangement which
can take place in the quantities.

4. It is evident that each of the quantities a, b, ¢, &c. will
be found the same number of times in the compound product

arising from Z4-a x 24-b x T+ ¢ x Td x a-4-¢, &c. For
this product is equal to pqrst ==pqrs x T 4¢ ==pqrt x x4 d=
Pgst x T c=prst x £ b=qrst x x-4a, by substituting for the
compound quantities, x-4a, £-+b, &c. their equals p, ¢, &c.
Wherefore, in the compound product, each of the quantities
a, b, ¢, &c. will be found multiplied into the products of all the
others.

5. These things being premised, we may poceed to the
multiplication of the compound quantities x-}-a, x4b, x4-c,
&c. into one another ; and in order to be as clear as possible
in what follows, let us consider the sum of the quantities, a,
b, ¢, &c. or the sum of any number of them multiplied into
one another, as coefficients to the several powers of x, which
arise in the multiplication. By considering products which
contain the same number of the quantities «, b, ¢, &c. as ho-
mologous, the multiplication will appear as follows, and
equations of various dimensions will arise, according to the
powers of . '
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L Ja=p

z
+“}x +ab==pq; a quadratic equation, or an equation of
two dimensions.
z Fo=r

‘+a) J-ab ‘
~+b x’+ac}x ~4-abc=pqr; a cubic, or an equation of three

Fc) Jbe dimensions.
z td=s
‘day  ab’
+b{ otac| Fabe
‘ I;, iiﬁi ’i‘;bd x -abcd=pqrs; a biquadratic, or an
Gbd| +bed equation of four di-
X mensions.
Z o=t

a]  ab +abq
+b| dac| abd
¢ px*=b d

To L) ) o

+e) Abd\ A-abe Sa*}-abde px = abcde == pqrst; a sur-

gt Zce ‘f-acde solid, or an equation of -
izz i a;ﬁ - =fbcde five dlmensmns
t-ce| -J-bde
J-de) = cde
&c.

6. From the above it appears, that the coefficient of the
highest power of z in any equation is 1 ; but the coefficient of
any other power of x in the same equation consists of a cer-
tain number of members, each of which contains one, two,
three, &c. of the quantities 4, b,¢, &c. Thus the coeflicient of
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the second term of any equation is made up of members, each

of which contains only one of the quantities a, b, ¢, &c. and
the whole coefficient of the second term is the sum of all

these members, or the sum of all the quantities 4, b, ¢, &c.

used in the multiplication by which the equation, under consi-

deration, was produced. Thus in the equation of four dimen-

sions, the whole coefficient of the second term is a+b+c+d;

and a, b, ¢, d, were used in the multiplication in obtaining the

equation. The coefficient of the third term, of any equation,

is made up of members, each of which contains two of the
qﬁantities a, b, ¢, &c. used in the multiplication in obtaining

the equation. Thus in the equation of four dimensions, the

whole coefficient of the third term is ab - ac 4 bc + ad 4 bd
++cd. And indeed, not only from inspection, but also from

considering the manner in which the equations are geherated,

it is evident that each member of any coefficient has as many

of the quantities a, b, c, &c. in it, as there are terms in the
equation preceding the term to which the coeflicient belongs.

Thus each member of the coefficient in the second term of

any equation is one quantity only, and only one term precedes

the second term. Each member of the coeflicient in the third

term, of any equation, consists of two quantities, and two

terms precede the third, &c.

7. When any equation is multiplied in order to produce the
equation next above it, it is evident that the multiplication by
x produces a part in the equation to be obtainea, which has
the same coefficients as the equation multiplied. Thus, mul-
tiplying the equation of three dimensions by x we obtain that
part of the equation of four dimensions which has the same

MDCCCVI. ' Ss
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coefficients as the cubic: the only effect of this multiplication
being the increase of the exponents of z by 1.

8. But when the same equation is multiplied by the quan-
tity adjoined to x by the sign <=, each term of the product, in
order to rank under the same power of x, must be drawn
one term back. Thus when the first term of the cubicis mul-
tiplied by d, the product must be placed in the second term of
the biquadratic. 'When the second term of the cubic is multi-
plied by d, the product must be placed in the third term of
the biquadratic: and so of others.

9. As the equation last produced is the product of 2ll the
compound quantities £+4a, r<-b, x+4¢, &c. into one another,
and as it was proved in the fourth article that each of the
quantities a, b, ¢, &c. must be found the samme number of times
in this product, if we can compute the number of times any
one of those quantities enters into the coefficient of any term
of the last equation, we shall then know how often each of
the other enters into the same coefficient: and this may be
done with ease, if of the quantities a, b, ¢, &c. we fix upon
that used in the last multiplication. For the last equation,
and indeed any other, may be considered as made up of two
parts; the first part being the equation immediately before
the last multiplied by x, according to the 7th article, and the
second part being the same equation multiplied by the quan-
tity adjoined to x by the sign +}-, last used in the multiplication,
according to the 8th article. This last used quantity, therefore,
never enters into the members of the coefficient of the first
of these two parts, but it enters into all the members of the
coeflicients of the last of them. But that part into which it
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does not enter has the same members as the coefficients of
the equation immediately before the last, by the 7th article;
and when the members of the first part are multiplied by the
last used quantity, the product becomes the second part of
the whole coeflicient ahove mentioned.

Thus the first part of the cubic equation, by the %th article

s, * +a }x’-—i—abx and as these coeflicients are the same as

the coefﬁments in the quadratic equation, being multiplied by
¢, and arranged according to the 8th article, we have the co-
efficients of the second part of the cubic, viz. c-ac fabe.
+bc

Hence it is evident, that there are as many members in any
coefficient, which have the last used quantity in them, as’
there are members in the coefficient preceding, which have
not the same quantity. Thus in the gd term, in the equation
of four dimensions, there are three members of the whole
coefficient of x* which have d in them, viz. ad, bd, cd, and
there are three members of the whole coefficient of z° in the
second term, which have not d in them, viz. a, b, ¢. In the
fourth term of the same equation, there are three members of
the whole coefficient of x, which have d in them, viz. abd,
acd, bed, and there are three members of the whole coefficient
of z* in the third term which have not d in them, viz. ab, ac,
be. Now as it has been proved that each of the quantities a,
b, ¢, &c. enters the same number of times into the coefficient
of the same term, what has here been proved of the last used
is applicable to each.

10. From the last article the number of members in the
several coefficients of any equation may be determined, For

S5s e
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if we put s== the number of times each quantity is found in a
coefficient, = the number of quantities a, b, ¢, &c. used in
producing the equation, and p= the number of quantities in
each member ; then as a is found s times in this coefficient, b
is found s times in this coefficient, &c. the number of quan-
tities in this coefficient, with their repetitions, will be s xz; and
as p expresses the number of quantities requisite for each
member, the number of members in the coefficient will be _;;’f.

Thus, for the sake of illustration, if we limit the above no-
tation to the second term of the equation of five dimensions,
s=1, as each of the quantities a, b, ¢, &c. is found once in the
whole coefficient of +*; p==1, as each member consists of one
quantity, and n=3, as a, b, ¢, d, e are used in producing the
equation. Consequently % =j4. If we limit the above nota-
tion to the third term of the same equation, s=4, p==2, and
n==45, and therefore % =10. If we limit the above notation
to the fourth term of the same equation, s=6, p=g, and n=y5,
and -5-;-1- =10. If we limit the above notation to the fifth term

of the same equation, s==4, p==4,, and n=5, and %" =35.

11. Using the same notation, we can by the last two
articles, calculate the number of members in the next coeffi-
cient after that whose number of members is % For as %‘
expresses the number of members in the above mentioned
coefficient, and s the number of times each quantity is found
in it, -;—,'f —s=— the number of times each is not found in it. By

the gth article therefore, @ will be found % — s times, b will

be found ;7” —s times, &c. in the next coeflicient, and‘there-

fore %-— Sx o= i”f-%zs-’i — the number of quantities, with.
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their repetitions, in it. But as the number of quantities in
each member of a coefficient is 1 less than the number in each
member of the coefficient next following, each member of
the coefficient whose number of members we are now calcu-

lating will haife in it p--1 number of quantities. Consequently
sn*—psn —_ n n—p __
pxptr 1’ *pF1

cient next after that whose number of members is — P’ as in

— the number of members of the coeffi-

the last article.

12. It is evident, from the sixth article, that the value of
p in the second term of any equation is 1; in the third term
of any equation its value is 2 ; in the fourth term of any equa-
tion it is g, &c. It is also evident that the number of members-
of the coefficient of the second term of any equation is z; for
the whole coefficient is the sum of all the quantities a, b, ¢, &c.
used in producing the equation It therefore follows that the

. m
general expression 7 X

us to ascertain the number of members in the coefficient of
any term in an equation. For the number of members of the
coefficient in the second term being 7, according to the suc-
cessive values of p the number of members in the third term

P + — L obtained in the last article, enables.

isn."=; in the fourth term it is % . ":‘ . "‘;’2; in the fifth
—1 n—2 n—3
37 4

extended to express the number of members in the coefficient
of any term whatever.

1g. The binomial theorem, as far as it relates to the raising
of integral powers, easily follows from the foregoing articles.
For if all the quantities 4, b, ¢, &c. used in the multiplication
in the fifth article, be equal to one another, and consequently-

term itis n .~

; and this regular form may be
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each equal to 2, each of the members in any coefficient will
become a power of a; and, therefore, as the exponent of x in
the first term is equal to #, it follows from the sixth and last

articles that zaal'=a"Fnaz" " "dn e 2" o 2 220

: z " 3
— Neel N2 N n
S4n. —. 3.43 "’-{-&c

14. If equations be generated from t—a.x—b.x—c .2—d,
&c. the coefficients will be the same, excepting the signs, as
those which result from z4a.z4b.z4c.24d, &c. in the
fifth article ; and as minus multiplied into minus gives plus,
but minus multiplied into minus multiplied into minus gives

minus, the coefficients in equations generated from z—a.

L—b.x—c¢ . x—d, &c. whose members have "each an even
number of the quantities a, b, ¢, &c. will have the sign -,
but coefficients whose members have each an odd number of
the quantities a, b, ¢, &c. will have the sign —. And hence it

. . L ——in N1 Newe T N2 n—1I

is evident that r—al'=1"—nazx ~+n.——ad'x "~ —n.— .
- =1 n—2 #=3 4 K- '

7 2a3 n— 3+n n l.n z.n 3 a* —4__ &ec.

3 3 4

15. By the general principles of involution a+b\”—-a”x
14 —a-l =a"x 14-zI", by putting r= TZ;-. By article 18, 1l
. n—1 N1 n—2 3 Al #—2 N3 4
=14nrdn.— 2*4n. . Lo == zt 4

. — . m —1 a
&c. and by the same article 14zl"=14mx4m . —— 2*+4m.
Mm—1 M-z 3 Mm—1 M—2 M—3 4 ,
e — . . . z*4 &c. But by the ge-

R e + y 8 -
neral principles of involution, and article 18, 14-zl" x 14-2|
n+m-1

=1+l " =1ntm et = 2 ngm. -
nAm=2 05 4, A 'v"+"31—2__’?+,’:’3x + &ec. When n

and m are whole numbers,
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Hence it is evident that if the series equal to 14-zI" be
multiplied by the series equal to 1+2I”, the product must be
equal to the series which is equal to T4-zI**™, Now the two
first mentioned series being multiplied into one another, and
the parts being arranged according to the powers of x, the
several products will stand as in the following representation.

+rl_1+nx+n _____xg_{_n n—x n—z +7Z He— ‘x.n—z-n_3x4+ &C.

3

TRA=me b R e, -"1’—’ m;”xs+m."’;‘.’"-2 3 gt s

3

N1 71-—2

-~
2

rn = "’"3 24 &e.

my-- m.71;7r:°+m.7z.—-2;_‘—1 x+m.n.":'."_2 4 &,

m

m.-————l-x’—{—m.m:l . nxs—{—m.m_!.n. = 4 &e.

-2 2 2
ma—1 M2

2

— 2m.

For the sake of reference hereafter let this be called
multiplication A.

Now with respect to the coefficients prefixed to the several
powers of x, in the foregoing multiplication, two observations
are to be made, by means of which the demonstration of the
‘theorem may be extended to fractional exponents.

In the first place, supposing z and m to be whole numbers,
the sum of the coefficients prefixed to any individual power
of x, in multiplication A, must be equal to the coefficient pre-
fixed to the same power of # in the binomial series 1 +mx

+n4m . -3';*";":-1 L ndm . n+;n_l . "+m = n+m .
A 7’""_;"“’3 . ,&+:,_3 x2*4 &c. The certalnty of this cir-
cumstance rests partly on the 1gth article, and partly on a

. nxt- &c.
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plain axiom, viz. that equals being multiplied by equals the
products are equal.

In the second place it is to be observed, that the whole
coeflicient of any power of z, in the products of multiplication
A, may be reduced to the regular binomial form, established

in the 1gth article. Thus —, the whole
coefficient of z°, by actual multiplication becomes

n*fFm*d zmu—n—m nfgm—1 H—1 n—z
+-+2, ___n+m + ————. Alson. +mn .

n—1 M1 M2
. 22l g
13 4 M3 3% m3mMA 4 30% m

z*, by actual' multlphcatlon becomes . +

3",'2""'6mg+2"+2m =n-tm . "+'2""I . "+;"""2. And from the
‘preceding observation it is evident, that we may in the same
manner, reduce the whole coefficient of any other power of
'z, in the products of multiplication A to the regular binomial

form.

, the Whole coefﬁaent of

16. But in proceeding, as above, to change the form of the
coefficients prefixed to any power of z, in multiplication A,
into the regular binomial form, we are not under the necessity
of supposing 7z and m to be whole numbers. The actual mul-
tiplications will end in the same powers of # and m, the same
combinations of them, and the same numerals, whether we
consider z and m as whole numbers or as fractions.

We are therefore at liberty to suppose # and m to be any
two fractions whatever, in the two series multiplied into one
another in multiplication A, and the same two fractions will
take the place of # and m respectively in the regular binomial

series 14-n-mr—+n-m. ”+m 2EMZ et ko n+7zn--l.n+1;z_zx3
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. pinol namer "‘+:'"3 2*4- &c. which expresses

the product of the two series into one another.

1%7. If therefore r be any positive whole number we can
1

— 1
. . . - 1
raise the binomial series 14 —

1 1 1 I

-——-2 e § ——2

x +—- T : z*<4 &c. to any proposed
power by successwe multiplications ; or we can express any
power of it by supposing the multiplications actually to have
been gone through. Thus, calling the last mentioned series
the root; if it be multiplied by itself, and if the coefficients in

the product be expressed in the regular binomial form, its
2 2 2

'—-—-l — s [ e e 2

2 r r
x‘+—;~.——-—z-—.-—-3-—- zd 4=

| square will be 1 — .r+ -

_2_ 1 2 2 2 3
2 7 r r 4
B -~ &' &c. Again, if this series be mul-

tlphed by the root, and the coefficients in the product be ex-
pressed in the regular binomial form, the cube of the root

—-—l -—3;—-1 -g--—z -r—--l
will be 1+—-x+—- x’+-—.———;—- —--—--.2:+-——-7-—~.
2. 3
r r

3 x*<= &c.  Proceeding thus, by multiplying the

last found power by the root, in order to find the next higher

1

__.....1 --..._1

a+——

power, the nth power of 14 -;- x-]— -;— .

I 1 I X

— e 2 —_—— — =2 — 3
1 r r T . n n
X — . et &eis 14 4

— e [ S e | — s D, — ] S e 2 _....._3

MDCCCVI, Tt
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18. If in the series, which concludes the last article, # be
equal to r, the whole series becomes equal to 14-x. Forin

n
— e |
r

— ==0, and consequently

every term in the series, after the second, becomes equal to o,
or vanishes.

this case — ==1, and therefore

Hence it is evident that the rth root of 14-x, or, which is
X I

— e §

r

the same thing, that 142l =14 — 24 — . Z— 2 —

) ¢ 1 1 1
— ] — — v ] e own 2 e -

r r 3 17 r r a .
— At &} &c. for this se-

ries being raised to the rth power becomes equal to 1-}-z.

As by the general principles of involution the zth power of
1 n

141" is 14217, it therefore follows, from the last observa-
n
tion and the preceding article, that 14-al =1+ —’:— x4 -';’,— .

n n n n n n
[ S ) ——] ——2 — 3}
r

n 7 r 3 Mt +
— T T + 5 - et +
&ec. \

t9. By the general principles of involution a—bl"=a"x

1— %‘ =a"x1—zl’, by putting r= -;[;—. By article 14, z being

n—1 n—2 4

ou—— N1 ‘
a whole number, 1—zl'=1—na4-n . — a*~—n .

. x
2 T3
Jn B2 222 223 44 &c. and by the same article, m being
2 3 4
— m—1 M 1
a whole number, 1—al"=1—mz4m . 2—m .

2

..’.’1;:3. atpm ’"3‘2 . ’"4’3 x*— &c. But by the general

principles of involution, and article 14, 1—al x 1—al ==1—al*+™
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*"'1-—-n+mx+n+.m "+m __n+m . n+m~—~1 ) rz-l-f;e—-z 78
fnm TEEE 2RI "+:'—3 2 — &e.

Hence it is evident that if the series equal to 1—zl" be
multiplied by the series equal to 1—uzl”, the product must be

equal to the series, which is equal to 1—z[*+™. Now the two
first mentioned series being multiplied into one another, and
the parts being arranged according to the powers of z, the
several products will stand as in the following representation.

N—2 Neem2 N3

—n n—1 _, n—t
1—zl' =1—ngtn . —2*—n.— — X e s a*— &c.
—m_ m—t . m—1 m—2z 3 m—2z m—-3
1— a2l =1—ma-m. ——x*—m. ~— .————-—3 fm, = T e — &ec.
n—1 n—2z Rl  He—2 N3 4
— n...__.xﬂ._n e 7. . . xri— &c.
1— nat =t =

-1 Hem2 4
x+m.n. o &e.

Mme1 m—1 3 m—1 H—1 "
m——a*—m . — . na*m . PRl &c,

—NT 1 .

Ml  M—2 3 M1 M2 o
m.—= &'m . s nat— &e.

For the sake of reference hereafter let this be called
multiplication B.

Now for the same reasons as are stated in the 15th and
16th articles, the whole coeflicient prefixed to any power of
2 in multiplication B, must be equal to the coefficient prefixed

to the same power of @ in the series 1—m--nr-f-m--n.

mtn—i o — m4n—1 mn—2 3, 73— mtn—1 m-in—2
—f—;——x—m-len. Pumie Tmn . —— . ——

. ﬂi{—:ﬁ 2*— &c. ; and we are also at liberty to suppose z and
m to be any two fractions whatever, in the series multiplied
into one another, and consequently in the series expressing
their product.

Tt e



322 Mr. RoBERTSONs new Demonstration,

Proceeding therefore as in the 17th and 18th articles, and

1 X
—— [
. . r 1 17 o 1
using the same notation, 1—xl " =1— — a4 — . —— 2"~
I I 1 1 I
E v 7 T TR T
. . Ll —. —. r*— &c.
z 3 r 2 3 4
n n n n
r n n _r—mI n _r'_l _r“-m2
e e s
Also1--xl_.1-rx+r. T
n
s 7"‘2 7 3
+-— . . a*— &c.
4

20. It is easﬂy proved, by means of the 15th and 16th
articles, that

1" apmedem T aedem S m"”z* e 2, m:z ——3 4 &ec.
or

ital’ e neden . T arden 2 .ff—zb U ) .”:3 P4 &c.

2 3
: 2fem—n .

h . m—-
is equal to the series 14-m—nwfm—n . ——

R (A Nl 2, 3 - M — 1 N e P 2 m-—n-g 4

T . ——— 4 &c.
whether 7 and 7 be whole numbers or fractlons. For v being
equal to m—n, this last series becomes 1-vo+4v . == "} ,
Vel UV—2

a Yol Y2 1/--3 2
> Ot ; a*-} &c.; and this series being

2

multiplied by 14-ne4n . == & .=, o =. "’3"

= 2*-- &c. the series expressing their product, by the 15th
and 16th articles, is 1 =vfenav4n . ”+Z—I~”’+5:l-—n; v+7;—-1

vV+n— v — 1 UVt A2 v -—

AL P o +3 . +Z 3 2*4- &c. But as
v is equal to m—i, thlS last series is equal to 1--mo-fm .
m—1 2 M= I M2 . m—z m—3
A e —— 2 . . v &c.

3 4
is equal to 14 —nr-=m —n

1 r-x‘m

Hence it is evident that —
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| P van Homm 1

o Mool Mol 2 = Mamfe=] Nawll—2
—— a1l . . Al .

| 2 3 ' 2 3
1 . i”-‘—'-%"—-" a*4~ &c.; and as this equation holds in every pos-
’ sible value of m, and as, by the general principles of involution

1+4-2l” is equal to 1, when m is equal to o then =
I+4+x

—Hm 1 —R=Z g —n—1
o — T —1 . .
2

, or

ey Ty} el (d §
142 =1—nr—n. X1

s 2 s e 3

3According to the form of the binomial series, the whole of
the second, fourth, sixth, &c. terms in the last series consist
of an odd number of negative parts multiplied into one
another, and therefore each of these terms becomes a nega-
tive quantity. But the whole of the third, fifth, seventh, &c.
terms, consist of an even number of negative parts multiplied

into one another, and therefore each of these terms becomes

rt— &c.

a positive quantity. Consequently, 1 +wl""”.~—.—.1—-nm+n . -"—1:—5 at
n+1 n+z n41 niz n+3
~ 2’ en Patheall, — &ec.
a1. By the 1gth article we are enabled to prove that

\ Mo 1 m—1 m—2z M—1 M2 M—
l—wlm 1+m.-—1‘+m ;.——Tx"’-}-m,-——;-—.————__x’_}_m. — . ; N d«"+ &C
or
1eal 1 o —an . :
M=—lm= I

is equal to the series 1m—n . —r-fmi—n.——— 2"m—n
M= 1 TN e P 2 3 M1 M=-—N——2 Al 4
° ° A =1 . . o A
2 03 + 3 . z e} . 3 . 4 +
&c. For,as in the preceding article, if this last series be mul-

tiplied by 147 . —2-n . -——-.22+77 A o 211 .

n—z n—3

3

1o c—am

somn(]

— e — > i A e .n— &,

7l—=-l Foawm 2

3
a*< &c. the series expressing the product will be

T R A LR

2z
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— — | . I—O—
3—"—;2- : m43 a*J= &c. Consequently as __._f: =14m—n.
: I—=—2
— S Al § M = Pl T MmN 2 S—
—am—n, T e S T =2 m—n
T IR 2T 4 &c. in every possible value of
z 3 4 ,
m, it follows that when m is equal to o, then — l or1—al
i—x|?

o ] e e e T s Plowne 2 s}, e
=1—n . —2—n T T —n .
J S Y S

TR e &e

3 4
The form of this series, however, may be changed into one

more convenient. For the whole of the second, fourth, sixth,
&c. terms consist of an even number of negative parts multi-
plied into one another, and therefore each of these terms
becomes a positive quantity. And as the coefficients of the
third, fifth, seventh, &c. terms consist of an even number of
negative parts multiplied into one another, and as in these
terms the powers of @ are positive, each of these terms be-

comes a positive quantity. Consequently 1—al™"=1-}no
p q Yy q Yy

nt+1 nt+1 ntdz 4 n+1 nt2 n43 4
e Zgn . ——. Rk 2" &c.

Every particular necessary for the establishment of the
binomial theorem has now been proved. I therefore proceed
to conclude the subject, by shewing that each of the four
forms, in which the theorem may be expressed, immediately
follows from the preceding articles, and the general principles
of involution. In each of them 7 is to be considered either
as a whole number or fraction.

. — - -1 — -
22. By article 18, 1+4-al'=14n24n . Z=z'n. 222 2 ;'.1:3

Hoel fmm2 Nem3 . ﬁ; \
+n .= ¢ & Butif be equal to », then
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" G| c—— o e . .
a’x1+.-‘-l-‘ ==a4-bl", by the general principles of involution;
n—1 b* Hom 1 HemZ

LI N _?_ e
and therefore abl'=a"x : 1d-n— +n . —— 2. . —

a* 2 3
N1 w2 W b" ] -
a3+ "3 3 = - &ec. =q"nba" +n.——-—" b
Nl N—2 54 n--g, N1 Hem2 n--3 4 N4

+n.———--2 = b’ a +n. Pl b*a” "7 4 &c.

By article 19, 1 —al'=1—nadn . 22> ' . = .""3" AR

Rl N2 e
.= .”32."43:0 — &c. and therefore as before, if -—be equal

to z, a—bl =a"— +n.3':-'- "in. -:-I- "—'zb' a3

Homl Hoe2 Nem3 g4 Hewd
n. . . b*a" T — &ec.
2 3 4 ¢

By article 20, 1421~ "=1~—nz4n .

n+x 41 n—2 3

x—-—n." T

+n. n:l n_;z."':z’ 2*— &c. and therefore 1f be equal to @,
n+1 b* ni1 nitz b’ ny1 nfz

1+-—-l _1—-n—-+ o B e

. "':3 :4 &c. But by the general principles of 1nvolut10n

_—-—-’-————ﬁ —a " x 1+7| =a+bl_ : and therefore a+bl

a"x1+-——l
—#__ Y amat § ntYg, —H—2 n41 1}_—_{-_3 3 m=He—3
a~ —nba dn . ——b"a n.o——-= b’a 7.

2

atd1 nt2z n43 b4a--n—4._ &c

z ' 3 " 4
- g ML A
By article 21, 1—al "==14-nz-4n . = x+n.~2—-. —
b
Fn. ";“ otz .":3 #*4 &c.; and therefore if = be equal to z,

3
[ i b nt1 b® n41 ntz b3 nti niz
1—-——‘ =1 — i e

"+3 » =+ &c. But by the general principles of involution

1 el ™" ———n e
'S T -;—I ==a=-bl ; and therefore a—bl ==

S
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a "nba " f;:-! ba " n. "'21 .—-";"2 Ba "Pden.

n41 nt2z 14334 —n—i
PRkiRrati b*a -+ &ec.
The four forms expressed in this article include the whole

of the binomial theorem.



